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Abstract 
It is often assumed that electron backscatter and continuum (bremsstrahlung) productions emitted from electron-solid interactions during X-ray 
microanalysis in compounds can be extrapolated from pure element observations by means of the assumption of average atomic number, or Z-bar 
(Z̅ ). For pure elements the average Z is equal to the atomic number, but this direct approach fails for compounds. The use of simple atomic 
fractions yields completely spurious results, and while the commonly used mass fraction Z averaging produces fairly reasonable results, we 
know from physical considerations that the mass of the neutron plays only a negligible role in such interactions below ∼1 MeV. Therefore, 
including the mass or atomic weight in such calculations can only introduce further errors in these models. We present an expression utilizing 
atomic fractions of the atomic numbers of the elements in the compound (Z fraction), with an exponent to account for the variation in nuclear 
screening as a function of the element Z value. 
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Introduction 
Electron probe microanalysis (EPMA) is a powerful analytical 
technique for characterizing the composition of a material by 
identifying and quantifying peaks in the X-ray spectra caused 
by the ejection and refilling of orbital electrons of atoms within 
the material. Yet to properly interpret these results, researchers 
must also model the modification of the spectra due to electron 
scattering off atomic nuclei. Electron-nucleus scattering affects 
the spectra in two ways: backscattered electrons (BSE) modify 
the relative strengths of characteristic X-ray peaks while 
Bremsstrahlung, or “braking” radiation, forms a continuous 
background signal in the X-ray spectra called the continuum. 

Such scattering models combine known information about 
pure elements for estimating backscatter and continuum pro-
ductions in compounds. Currently, microanalysis researchers 
generally use the average mass fraction of elements in a mater-
ial to model average Z in compounds, however, this approach 
is flawed. The mass fraction differentiates between elements in 
a compound by atomic weight, the average mass of the elem-
ental isotopes scaled by their terrestrial abundance. Atomic 
weight does not scale linearly with the atomic number of pro-
tons, as it includes neutrons as well. At the typical beam ener-
gies used in EPMA, electrons do not scatter from neutrons, 
only charged particles, and so atomic weight is an incorrect 
quantity to use in our models. 

It is true the mass of the nucleus can affect electron scatter-
ing when the incident electron transfers enough energy for the 

nucleus to have a non-negligible recoil. However, this requires 
an accelerating voltage far higher than in EPMA operating 
conditions. Consider an elastic collision of an electron and a 
nucleus at rest. The maximum energy transfer to the nucleus 
occurs with a scattering angle of 180°. The recoiling nucleus 
of mass M acquires increased kinetic energy ΔE 

ΔE = 2M
m2

e

(me + M)2 v2 (1) 

where me is the mass of the electron and v is the initial 
velocity of the electron. Since me is much smaller than M, 
me + M equals M to a very good approximation, and we can 
express ΔE as 

ΔE ≈ 4
me

M
E (2) 

where E is the initial kinetic energy of the electron. The largest 
energy loss occurs in hydrogen, where 4me/M ∼ 4/2000. 
Hence, in each purely elastic collision, an electron loses a max-
imum of ∼0.2% of its kinetic energy to the nucleus. For the 
vast majority of collisions, with much smaller scattering an-
gles, the energy loss is considerably less than this. For heavier 
nuclei, such as iron, it is smaller still (by a factor of A, the 
atomic weight of the nucleus). The difference in this quantity, 
for two isotopes of the same element, is even smaller yet: for 
56Fe and 57Fe, the difference in fractional energy loss per nu-
clear collision is, at most, 6·10−8. Earlier studies have 
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demonstrated the insignificance of mass to modeling both elec-
tron backscattering and continuum production in solids by 
empirical comparisons of stable isotope pairs of elements 
(Donovan & Pingitore, 2002; Donovan et al., 2003). Mass 
fraction has historically been the most accurate model, but 
some other form of atomic fraction averaging must be utilized 
for improved calculations of average Z in compounds. 

Atomic Number Averaging 
Although various alternative average atomic number, or 
Z-bar, expressions utilizing atomic number fractions are 
found in the scientific literature for both backscatter and con-
tinuum productions (Joyet et al., 1953; Danguy & Quivy, 
1956; Everhart, 1960; Büchner, 1973; Herrmann & Reimer, 
1984; Howell et al., 1998), simple mass fraction averaging is 
traditionally utilized by microanalysts (Goldstein et al., 1992): 

Z̅(ci) =
􏽘n

i=1

ciZi (3) 

where Z̅(ci) is the mass fraction average Z or Z-bar, ci is the 
conventional mass fraction of element i, and Zi is the atomic 
number of element i present in the compound. 

However, from the first principle physics considered above 
(Equations (1) and (2)) we know that mass has essentially no 
effect on these productions. Most serendipitously, it is only 
due to the fact that A/Z is roughly a constant over the periodic 
table (where A is the atomic weight), that this assumption of 
mass fraction averaging for compounds is a useful approxima-
tion at all. In fact, the error due to the inclusion of atomic mass 
in atomic number average calculations depends on the specific 
A/Z ratios of the elements in that compound. If the elements 
all share similar A/Z ratios, the error is small, but if the ele-
ments in the compound have relatively disparate A/Z ratios, 
the introduced error due to mass averaging can exceed 30%, 
as will be discussed. 

Given that atomic mass is essentially irrelevant to determin-
ing composition by X-ray microanalysis where the electron 
beam energy is significantly less than 1 MeV, a model based 
on atomic number is more suitable. Our approach is to modify 

the mass fraction average Z̅ as shown in equation (3), by defin-
ing an alternative fractional method, the Z Fraction, as fol-
lows: 

Z̅(zi) =
􏽘n

i=1

ziZi (4) 

where Zi is again the atomic number for element i, and the Z 
fraction zi is defined as: 

zi =
aiZi

􏽐n
j=1 ajZj

(5) 

and ai is the atomic fraction for element i. This expression is 
algebraically equivalent to the expression from Saldick & 
Allen (1954). However, to account for screening, we raise 
the Z fraction to an exponent x generally less than 1: 

Z̅(z(x)
i ) =

􏽘n

i=1

z(x)
i Zi (6) 

where z(x)
i is the modified Z fraction defined by: 

z(x)
i =

aiZx
i􏽐n

j=1 ajZx
j
. (7) 

Based on empirical backscatter and continuum measurements 
we obtain an approximate best fit to Eqs. (6) and (7) for x of 
around 0.7 to 0.8. The exact value of this exponent depends 
on the specific shape and density of the compound charge 
distribution. 

Results 
Empirical measurements of backscatter and continuum pro-
ductions were performed on the Cameca SX100 at the 
University of Oregon and the Cameca SXFive at the 
University of Adelaide using the Probe for EPMA v13.1.7 soft-
ware on both instruments. Monte Carlo modeling was per-
formed at the University of Oregon and University of 
Wisconsin using the PENEPMA 2012 software (Llovet & 
Salvat, 2017). 

Fig. 1. Measurements of electron backscatter on standard samples by measuring the ratio of the absorbed and Faraday cup currents, i.e., η = 1 − iabsorbed
i faraday

, 
for (a) mass fraction average Z, and (b) Z fraction average Z using an exponent of 0.7. This backscatter coefficient measurement is not absolutely accurate 
due to re-absorption of secondary electrons, but suffices for a relative comparison. Note benitoite (BaTiSi3O9), cinnabar (HgS) and galena (PbS) are 
compounds containing elements with significantly different A/Z ratios.   
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First we examine empirical measurements of absorbed and 
faraday cup beam currents as seen in Figure 1, where the 
pure elements are plotted as black symbols and selected stand-
ard compounds of known composition are plotted as red 

symbols for mass fraction average Z in (a), and modified Z 
fraction in (b). Compounds containing elements with a variety 
of A/Z ratios show improved correlation using the Z fraction 
expression with an exponent of 0.7. 

Fig. 2. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the chromium Kα emission energy position 
for pure elements and compounds that do not contain Cr, plotted using (a) mass fraction average Z, (b) Z fraction average Z̅ with exponent 1.0, and (c) Z 
fraction average Z̅ with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.   
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In Figures 2 and 3, and 4 we show results from high precision 
continuum X-ray empirical measurements for a range of pure 
elements and standard compounds for continuum energies at 
the Cr Kα, K Kα, and Na Kα emission line energies, respectively, 
for compounds that do not contain those elements. All con-
tinuum intensities were corrected for absorption using the 
method of Packwood & Brown (1981), though any absorption 
correction will produce similar results. In these three figures we 
show (a) for mass fraction, (b) Z fraction (exponent = 1.0), and 

(c) Z fraction (exponent = 0.7) that the best correlation is seen 
for the Z Fraction average Z method with an exponent of 0.7. 

Subsequently we performed a number of Monte Carlo sim-
ulations for both backscatter and continuum productions. In  
Figure 5, we plot the calculated backscatter fraction from 
high precision Monte Carlo modeling in PENEPMA 2012, 
for both pure elements and selected compounds, which in-
clude compounds containing elements with a variety of A/Z 
ratios. The pure elements from atomic number 10 to atomic 

Fig. 3. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the potassium Kα emission energy position 
for pure elements and compounds that do not contain K, plotted using (a) mass fraction average Z, (b) Z fraction average Z̅ with exponent 1.0, and (c) Z 
fraction average Z̅ with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.   
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number 85 are plotted as a line, and the compounds are plot-
ted as symbols, where we have assumed mass fractional aver-
aging for the calculation of average Z in the compounds in (a) 
and using the modified Z fraction with an x exponent of 0.7 
for (b), obtained from the best fit empirical data from Figure 1. 

Figure 6 shows results from PENEPMA Monte Carlo model-
ing of generated continuum intensities at 2 and 8 keV for pure el-
ements and a number of compounds using both mass fraction 
averaging and modified Z fraction averaging with x = 0.7. We 

note results from these figures suggest a possible small energy de-
pendence on the exact value of the exponent for these productions 
as discussed by Moy et al. (2021). Experimental and theoretical 
investigations of this subtle interdependency are ongoing. 

In summary, both experimental measurements and theoret-
ical calculations clearly show that the backscattered coeffi-
cients and the continuum intensities are best modeled using a 
Z fraction model with an exponent of approximately 0.7, 
which we designate the “Yukawa Z fraction.” 

Fig. 4. Measurements of continuum intensity (absorption corrected) using a 15 keV electron beam energy at the sodium Kα emission energy position for a 
number of pure elements and compounds that do not contain Na, plotted using (a) mass fraction average Z, (b) Z fraction average Z̅ with exponent 1.0, and 
(c) Z fraction average Z̅ with exponent 0.7. The blue line is the best fit to the data using a 2nd order polynomial.   
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The Yukawa Potential and Its Expected 
Accuracy 
Here we review and discuss a simplified model of 
electron-atom scattering to estimate a theoretical value of 
the Z fraction exponent x = ∼2/3. We use the Yukawa poten-
tial V(r) (Yukawa, 1935), also called a screened Coulomb or 
Wentzel potential, to describe the interaction of the incident 
electron and the target atom. Mathematically, 

V(r) = CZ
e−r/R

r 

where r is the radial distance from the atom nucleus, R is the 
screening length, and C = − e2

4πϵ0 
is a constant. The screening 

length R = a0Z−1/3 is given by the Thomas-Fermi model 
(Kittel, 2004; Carron, 2006; Egerton, 2011), where a0 is the 
Bohr radius. 

The Yukawa potential has been used successfully for many 
processes in physics dating back to Yukawa’s original efforts 
to describe interactions between nucleons (Yukawa, 1935). 
It is commonly used to model a Coulomb potential screened 
by another charge distribution, such as the potential of atomic 
nuclei surrounded by electrons (Kittel, 2004). Despite its ad-
vantages and pedigree, the Yukawa potential does not de-
scribe the actual charge distribution exactly. It suffers from 
infinite charge density at the origin, just as does the 
Coulomb potential, and it does not model the intricate struc-
ture of overlapping electron orbitals described by a fully rela-
tivistic quantum mechanical model. We use density functional 
theory (DFT) to accurately describe real charge distributions 
and test if the Yukawa potential is an appropriate model for 
our purposes. 

Using the atomic (ld1.x) package contained in the Quantum 
Espresso software (Giannozzi et al., 2009, 2017), we calcu-
lated the radial charge distribution for hydrogen, oxygen, 
and calcium atoms as a function of shell. We used the 
Perdew-Burke-Enzerhof exchange correlation functional 
(Perdew et al., 1996). In Figure 7, we plot the radial charge dis-
tribution 4πr2ρ(r) computed for hydrogen and oxygen. In (a), 
the radial charge distribution in hydrogen indicates a max-
imum 1 Bohr (a.u.) interaction range for the electron. In (b), 

we show the radial charge distribution of the 1s, 2s, and 2p or-
bitals in oxygen. Each orbital dominates a specific radial dis-
tance from the nucleus. The 1s orbital is pulled in to about 
0.2 Bohr while the 2s and 2p orbitals peak at about 0.8 Bohr. 

In Figure 8, we explore the radial charge distribution in the 
larger and more complex calcium atom. Figures 8a and b show 
the radial charge distribution to emphasize the interaction 
ranges of each orbital. Again, particular shells dominate dif-
ferent radial ranges: the n = 1 shell dominates r < 0.1 Bohr, 
n = 2 dominates 0.1 < r < 0.6 Bohr, and n = 3 dominates 
r > 0.6 Bohr. In Figure 9, we plot the DFT-based V(r) distribu-
tions for each element alongside an arbitrary Yukawa poten-
tial chosen to best fit V(r) outside 1 Bohr. Despite the 
multi-lobed quantum mechanical nature of the charge density, 
the corresponding electric potential V(r) yields a fairly trad-
itional looking distribution for H, O, and Ca. Thus, the 
Yukawa potential is correctly fitting the medium- to long- 
range regimes of the potential. We conclude that the 
Yukawa potential is a useful approximation of the atomic po-
tential and a suitable model for electron microprobe work. 
The use of a more accurate charge distribution (such as 
Mott scattering) would improve the modeling primarily for 
light multi-electron atoms such as O. 

The Differential Scattering Cross Section of the 
Yukawa Potential 
We will now describe electron-atom scattering by deriving the 
angular differential cross section dσ/dΩ of the Yukawa poten-
tial in the first Born approximation. This calculation can be 
found in many standard microscopy and quantum mechanics 
textbooks (Reimer, 1998; Griffiths & Schroeter, 2020). 
Specifically, dσ/dΩ is proportional to the probability of the in-
cident electron scattering from the spherically symmetric atom 
into a differential solid angle dΩ. 

Quantum scattering theory assumes that an incident plane 
wave, after interacting with a potential, propagates as a spher-
ical wave with angular dependence described by the complex 
scattering amplitude f (θ). The first Born approximation is a 
standard technique to solve the time-independent Schrödinger 
equation for the scattering amplitude and consequently the 

Fig. 5. Monte Carlo calculations from PENEPMA 2012 of the electron backscatter coefficient from pure elements plotted as a line, and compounds 
plotted as symbols, for (a) mass fraction average Z, and (b) Z fraction average Z using an exponent of 0.7.   
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differential cross section dσ
dΩ = | f (θ)|2. This approximation is 

valid for accelerating voltages above 1 keV and should be easily 
satisfied in electron probe microanalysis. 

For a projectile of mass m scattering from a spherically sym-
metric potential U(r), the scattering amplitude is, 

f (θ) = −
2m

h− 2κ
∫

∞

0
rU(r)sin(κr) dr, 

where κ = 2ksin(θ/2) includes the relativistic momentum of the 
incident electron via h− k = γmv. Now for the Yukawa potential, 

f (θ) ∝
1
κ

∫
∞

0
e− r

Rsin(κr)dr =
1

1
R

􏼒 􏼓2

+ κ2

.

Thus, we have our differential cross section 

dσ
dΩ

= |f (θ)|2 =
4γ2Z2

a2
0

1

1
R

􏼒 􏼓2

+ 4k2sin2 θ
2

􏼒 􏼓

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

2

.

Rearranging, and inserting the Thomas-Fermi screening length 
R above, 

dσ
dΩ

(θ) = 4a2
0γ2Z2/3 1 + (2ka0Z−1/3)

2
sin2 θ

2

􏼒 􏼓􏼔 􏼕−2

, 

we can see the cross section, when evaluated at θ = 0, is propor-
tional to Z2/3. 

Fig. 6. PENEPMA 2012 Monte Carlo (generated) continuum intensity simulations for pure elements from titanium to zinc (black symbols) and a number of 
compounds (red symbols) containing elements with relatively disparate A/Z ratios, for (a) mass fraction average Z at 2 keV, (b) Z fraction average Z̅ with 
exponent 0.7 at 2 keV, (c) mass fraction average Z at 8 keV, and (d) Z fraction average Z̅ at 8 keV. The y axes values are in probability density units, i.e., 
1/(eV∗sr∗electron).   
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The Modified Z Fraction Exponent 
Here we argue that both continuum and BSE emissions are 
most heavily dominated by forward scattering, and so both 
signals scale roughly with Z2/3 according to the simple model 
derived above. In Figure 10a, we plot the differential cross sec-
tion, an expression for scattering angle probability, versus 
scattering angle and atomic number for an accelerating volt-
age of 20 keV. The key qualitative feature of this scattering 
distribution is its sharp peak at low scattering angles and the 
maxima at θ = 0 for all Z values. In fact, with increased accel-
erating voltages this peak at small θ is only accentuated. Note 
the black line which highlights the Z2/3 trend at small θ. We 
further isolate particular atomic differential cross sections, 
again at 20 keV, in Figure 10b. At both ends of the periodic 
table, an atomic nucleus barely deflects almost all the electrons 
it interacts with. For Z = 5, 95% of all electrons are scattered 
within 9 degrees of their initial trajectory, while for Z = 96, 
95% of all electrons are scattered within 15 degrees of their 
initial trajectory. 

We also utilized PENELOPE 2012 (Llovet & Salvat, 2017) 
Monte Carlo simulations to substantiate this theoretical mod-
el. These simulations were performed with 100,000 total elec-
trons incident on aluminum (Z = 13), copper (Z = 29), and 
gold (Z = 79) at 15 keV. We examined all electrons which 
made it back out of the sample with an energy greater than 
500 eV. We next computed the average scattering angle for 
each electron, and took the mean of these averages for all 
backscattered electrons. We then found the same mean after 
discarding the largest scattering event for each backscattered 
electron. These are the Average Scattering Angle and 
Average Small Angle Scattering, respectively, in Table 1. We 
find, after removing the maximum scattering angle, this re-
duced mean is significantly smaller than the simple mean 
and well within the realm of small angle scattering for all three 
elements. 

These simulations tell us that the vast majority of electrons 
essentially continue in the direction of their original momen-
tum when incident on any atom in the sample as shown in  
Figure 11. However, most BSEs are electrons that undergo 

Fig. 7. The radial charge distributions 4πr2ρ(r ) of orbitals for hydrogen and oxygen atoms: (a) the H atom (which is only due to the 1s electron) and (b) 
individual orbitals in O (not all orbitals are fully occupied).  

Fig. 8. Plots showing the charge distribution 4πr2ρ(r ) of electrons in the calcium atom (a) for each orbital individually (not all orbitals are occupied), and (b) 
for all occupied Ca orbitals combined.   
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one or two rare higher-angle scattering events at the beginning 
of their history inside a material. These high-angle scattering 
events turn the BSE’s trajectory back in the direction of the 
surface. These BSEs then experience many more scattering 
events as they travelled back towards the surface. As estab-
lished above, the likelihood of low-angle scattering events 
dominate, and this probability converges towards Z2/3. Of 

course, the electron could also undergo a second, third, or 
nth higher-angle reorientation, but these more unlikely sequen-
ces yield an electron which stays within the sample unmeas-
ured. Thus, the overall probability for an electron to 
re-emerge from the surface, becoming a backscattered elec-
tron, is proportional to the probability of the dominant low- 
angle scattering events. 

Electron scattering events also produce X-ray radiation as 
these redirections of the electron trajectory necessitate the de-
celeration that gives bremsstrahlung its name. We measure 
the aggregate of these signals as continuum X-rays, which are 
generated predominantly at the low energy limit as shown in  
Figure 12. For increasing energy in continuum production, 
the decreased probability of scattering events large enough in 
angle, hence energy, limits the continuum production until 
reaching zero at the Duane-Hunt limit. Thus, it can reasonably 
be claimed that continuum X-rays are predominantly generated 
by electrons scattering at low angles, since this process is the 
overwhelmingly dominant one. Thus, the Z-proportionality 
of X-ray continuum also scales approximately as Z2/3. 

We do observe variation in the Z exponent from Z2/3 predom-
inantly towards Z2 in empirical measurements of BSE and con-
tinuum emissions of compounds. Figure 13 shows experimental 
evidence of differing best fit Z Fraction exponents from empiric-
al continuum measurements over a range of emission energies. 
This is further corroborated from PENEPMA 2012 (Llovet & 
Salvat, 2017) Monte Carlo simulations of the optimized Z frac-
tion exponents for pure elements and compounds as shown in  
Figure 14. We would predict, in general, deviations from our 
model to manifest as a slight increase in the Z exponent. 
When fitting the differential cross section to Zx while treating 
a nonzero θ as a parameter, the exponent x rises monotonically 
with θ to a bound of x = 2. Figure 15 depicts this transition and 
the details of the calculations are shown in the Appendix. 

Implications for Microanalysis 
Considerations from physics, empirical measurements, and 
Monte Carlo modeling all demonstrate that mass has essen-
tially no effect on the generation and emission of backscat-
tered electrons and continuum X-rays in electron-solid 
interactions at typical electron energies utilized in electron 
probe microanalysis. 

But what about the main focus of microanalysis: the gener-
ation and emission of characteristic X-rays for elemental 
quantification? We do not at this time attempt to provide a 
Yukawa Z fraction based model for the treatment of charac-
teristic emissions, however we can say that such a model 
would be entirely consistent from what we already know 
from physics, which is that both wavelength and energy dis-
persive X-ray spectrometries (WDS and EDS) do not weigh 
atoms. They count them! 

Simply put, the use of mass fractions in the physics of elec-
tron probe microanalysis induces a bias equal to the relative 
differences in the A/Z ratios of the elements involved. For 
some elements this difference in A/Z is small, but for other 
compounds these A/Z differences can become quite large. 
For example, the relative difference in mass fraction versus 
the Yukawa Z fraction for average Z in MgO for Mg and O 
is under 1%, while for a compound such as PbS, the differen-
ces in A/Z yield average Z values that vary by more than 20% 
relative (Donovan et al., 2003) as shown in Table 2. If we es-
timate the backscatter correction in PbS to be ∼20% of the 

Fig. 9. The electric potentials V(r), calculated from charge distributions 
derived from DFT, plotted against a Yukawa function least squares fit to 
V(r) over radial distances from 1 to 100 Bohr radii plotted from 0 to 10 
Bohr. See (a) for H atom, (b) for O atom, and (c) for Ca atom.   
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matrix correction, we are looking at an accuracy error of 
around 4% relative in such materials. In fact, we suspect this 
is one reason many analysts seem to require the use of so- 
called “matrix matched” standards for best accuracy. We be-
lieve that only through the use of a Yukawa Z fraction based 
analysis can we adequately handle these mass induced biases 
in our quantitative analyses. 

Further, albeit indirect, evidence for this assertion is demon-
strated in Figure 16, which shows WDS measurements of 

Fig. 10. Scattering probabilities as a function of atomic number Z and scattering angle θ (a) and for selected atomic numbers Z = 5, 50, and 96 (b). Both are 
plotted with E = 20 keV.  

Table 1. Average Scattering Characteristics for Electrons Exiting Sample 
With Energies Greater than 500 eV in Monte Carlo Simulations. 

Sample 

Number of 
Backscattered 

e− 

Average 
Scattering 

Angle 

Average 
Maximum 
Scattering 

Angle 

Average 
Small 
Angle 

Scattering  

Aluminum 15,669  12.35  83.93  9.62 
Copper 30,092  19.82  93.50  15.38 
Gold 45,680  18.92  121.29  13.06 

The average small angle scattering is the average of all scattering angles 
without the maximum scattering angle included. 100,000 electrons 
accelerated to 15 keV were incident on each simulated material.  

Fig. 11. Polar depiction of the full angular dependence of the differential 
cross section, normalized by the maximum at theta = 0, for Z = 29 at 
20 keV. The inset, on a 100,000 times smaller scale, shows the relatively 
small number of complete (180 degrees) backscattering events.  

Fig. 12. Generated continuum radiation in copper at 15 keV. The vast 
majority of bremsstrahlung production is from low energy (small angle) 
electron scattering demonstrating the relatively large number of small 
energy scattering events producing continuum photons.   
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characteristic emission lines for Ni Kα, Cu Kα, and Mo Lα 
X-rays in pure metals. Both natural abundance material and 
enriched stable isotope material from the Oak Ridge Stable 
Isotope Repository were used in two sample splits. 
Fractional atomic mass numbers are averages for natural iso-
topic mixtures presented for comparison with masses for en-
riched isotopes. Each point represents an average of 10 
measurements, shown relative to the average intensity meas-
ured for both natural and enriched isotopes; each error bar 

is one standard deviation. The complete analysis 
(Measurement #1) was repeated for verification on a second 
probe mount of a separate set of isotope pairs (Measurement 
#2). Conventional mass fraction averaging implies that the 
X-ray emission from 60Ni, 65Cu, and 100Mo should be 
1.7%, 2.3%, and 4% greater than from natural Ni, Cu, and 
Mo, respectively. Note that all the measurements fall within 
0.25% of the respective average of each isotope pair, and 
that even the one-standard-deviation error bars are within 
0.5% of the average. These observed deviations are far less 
than the differences expected under atomic mass based 
assumptions. 

Some may argue that we currently successfully utilize mass 
fractions in our stopping power and absorption correction 

Fig. 13. Best fit Z fraction exponents for continuum measurements over a range of emission line energies for compounds that do not contain the emitting 
element using absorption corrected intensities. As expected, higher energy lines of higher Z elements show a best fit Z fraction exponent slightly greater 
than 2/3.  

Fig. 14. Plot of optimized Z fraction exponents from PENEPMA 2012 
Monte Carlo simulations of generated continuum intensities for a range 
of continuum emission energies. As previously shown by empirical 
measurements in Figure 13, at higher energies the optimum Z fraction 
exponent, for a range of pure elements and compounds, demonstrates a 
positive trend increasing from 2/3 to slightly higher values as expected.  

Fig. 15. Plotting average scattering angle as a function of the Z 
exponent, we see the highest probability is close to Z2/3 for average 
scattering angles approaching zero, thus demonstrating that Z∼2/3 is the 
dominant exponent as opposed to Z2. Details of this calculation are found 
in the Appendix.   
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calculations, but this is only because we simultaneously utilize 
associated parameters which are already normalized to mass, 
i.e., mass thickness and mass absorption coefficients. Such 
mass based modeling is not utilized in purely physics based 
Monte Carlo approaches, as we have demonstrated in the 
PENEPMA 2012 simulations. It is worth considering what 
mass biased results we might obtain from measuring isotope 
enriched materials such as 29Si in silicates, while utilizing a 
natural abundance standard, if we insist on expressing our re-
sults in mass fractions. Similarly, by utilizing Yukawa based Z 
fraction concentrations, we can also eliminate such mass bias 
effects in our analysis of normal isotopic abundance materials. 

Conclusion 
We argue that the traditional inclusion of mass in average Z 
calculations for microanalysis merely introduces a bias related 
to the A/Z ratio of the elements in compounds and suggest that, 
for improved accuracy in electron backscatter loss and con-
tinuum production modeling, only a Z dependent calculation 
be adopted for quantitative analysis. We have presented both 
experimental data as well as Monte Carlo simulations that 
both show excellent fits to predicted values when the Z fraction 
is raised to an exponent of approximately 0.7, and we provide a 
simple theoretical model for electron scattering from screened 
atomic potentials that predicts a similar Z fraction exponent of 
2/3 that is consistent with an experimentally derived value. 

Future work will attempt to provide a Yukawa Z fraction 
based matrix correction method for quantitative microanaly-
sis in which a suitable table of atomic weights will only be uti-
lized to convert our (standard) concentrations from mass 
fractions to Yukawa Z fractions, and subsequently to convert 
our matrix corrected (unknown) results using a similarly ap-
propriate table of atomic weights for these unknowns, from 
(Yukawa) Z fractions to mass fractions for final reporting of 
the analysis results in traditional mass units. 
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Table 2. Comparison of Concentrations Expressed in Mass Fractions, Z(1.0) Fractions, and Z(0.7) Fractions Along With the Relative Differences for Each 
Element, and the Mass, Z(1.0) Fractions, and Z(0.7) Fractions for Several Compounds Showing a Range of A/Z Effects. 

Compound Element 
Mass 

Fraction 
Z Fraction 

(Z1.0) 
Relative 

Difference (%) 
Z Fraction 

(Z0.7) 
Relative 

Difference (%) 
Mass 
Zbar 

Z Fraction 
(Z1.0) Zbar 

Z Fraction 
(Z0.7) Zbar  

MgO Mg  0.6030  0.6000  −0.50  0.5705  −5.40  10.4121  10.4000  10.2819   
O  0.3970  0.4000  0.76  0.4295  8.20          

TiO2 Ti  0.5995  0.5789  −3.43  0.5037  −15.97  16.3930  16.1053  15.0524   
O  0.4005  0.4211  5.13  0.4963  23.91          

GaAs Ga  0.4820  0.4844  0.49  0.4890  1.46  32.0360  32.0313  32.0219   
As  0.5156  0.5156  −0.46  0.5110  −1.36          

ZrSiO4 Zr  0.4976  0.4651  −6.53  0.3602  −27.61  24.8439  23.8606  20.5637   
Si  0.1532  0.1628  6.25  0.1728  12.75            
O  0.3491  0.3721  6.57  0.4670  33.77          

PbS Pb  0.8660  0.8368  −3.38  0.7584  −12.42  73.1560  71.23  66.0557   
S  0.1340  0.1632  21.83  0.2416  80.28          

Note the large relative differences in results when comparing traditional mass fractions and mass fraction derived average Z values to Z Fraction derived values 
for compounds with disparate A/Z ratios.  

Fig. 16. EPMA measurements of characteristic emission lines in natural 
abundance and enriched stable isotopes from the Oak Ridge Stable Isotope 
Repository in nickel, copper, and molybdenum for two separate splits of the 
materials (a) and (b). There is up to an almost 5% relative difference in the 
average atomic weights for these material pairs. This weight differential is 
significantly greater than the precision of the measurements.   
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Appendix: Variability of Z exponent with 
scattering angle θ 
The result of “The Differential Scattering Cross Section of the 
Yukawa Potential” is the function 

dσ
dΩ

= | f (θ)|2 = 4a2
0γ2Z

2
3 1 + 2ka0Z−1

3

􏼐 􏼑2
sin2 θ

2

􏼒 􏼓􏼔 􏼕−2

.

We observe dσ
dΩ is a rational function of Z, i.e., dσ

dΩ = dσ
dΩ (θ, Z), 

that simplifies into a true polynomial when evaluated at 
θ = 0◦. However, for any θ, we can validly fit the differential 
cross section to y = αZβ, where α and β are the fitting param-
eters. Figure 15 plots our Z exponent, the parameter β, as a 
function of θ. 

More rigorously, we can calculate the numerical value of the 
different coefficients in the previous equation. a0 is the Bohr 

radius of 5.29 × 10−11 m and k = γmec

h−

����������������

1 − mec2

mec2+E

􏼐 􏼑2
􏽲

is the mo-

mentum of the electron where me is the mass of the electron, h−
is the reduced Planck constant, and E is the electron energy in 
keV. For a beam energy of 20 keV, typical for EPMA, we have 
k = 7.32 × 1011 m−1. 

The above equation can be rewritten as 

dσ
dΩ

(θ) = 4a2
0γ2∗

Z2

Z2/3 + 4a2
0k2 sin2 θ

2

( 􏼁􏼂 􏼃2 

which, once expanded, is of the form 

dσ
dΩ

(θ) = A∗
Z2

Z4/3 + B∗Z2/3 + C 

where A = 4a2
0γ2, B = 8a2

0k2 sin2 θ
2

( 􏼁
, and C = 16a4

0k4 sin4 θ
2

( 􏼁
. 

Choosing θ = 180° to maximize B and C, and keeping E = 20 
keV, we have A = 1.21 m2, B = 1.20 × 104, and C = 3.59 ×  
107. We consider elements of atomic number between 1 and 
99, so Z2/3 ∈ [12/3, 992/3]  =  [1, 21.40] and Z4/3 ∈ [1, 457.98].  
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These values are too small to prevent C from being the domin-
ant term, leaving the differential cross section to be proportion-
al to Z2. 

To extend the domain of validity of this reasoning, we as-
sume EPMA analyses use electron beam energies ranging 
from 5 keV to 40 keV. A has a very light energy dependence 
in this regime, changing from 1.14 to 1.30 with this increase 
in acceleration voltage. Otherwise, at 5 keV and Z = 99, 
BZ2/3 = 6.32 × 104 and C = 2.18 × 106. At 40 keV and 

Z = 99, BZ2/3 = 5.23 × 105 and C = 1.49 × 108. And, while 
we’ve ignored the angular dependence of B and C in this ana-
lysis, sin4 θ

2

( 􏼁
is the same order of magnitude as sin2 θ

2

( 􏼁
for 

36.87◦ < θ ≤ 180◦. Consequently, at large scattering angles 
for all beam energies used in EPMA, the differential cross sec-
tion can be approximated by 

dσ
dΩ

(θ > 37◦) ≈
A
C

Z2.
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